Description
Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as base-a pseudoprimes, have this property for some a. (And some, known as Carmichael Numbers, are base-a pseudoprimes for all a.)
Given 2 < p ≤ 1000000000 and 1 < a < p, determine whether or not p is a base-a pseudoprime.
Input
Input contains several test cases followed by a line containing "0 0". Each test case consists of a line containing p and a.
Output
For each test case, output "yes" if p is a base-a pseudoprime; otherwise output "no".
Sample Input
3 210 3341 2341 31105 21105 30 0
Sample Output
nonoyesnoyesyes 如果p是素数,输出no;如果p不是素数,判断a^p对p取余是否等于a。
1 #include2 #include 3 __int64 f(__int64 a,__int64 b) 4 { 5 __int64 c=b,t=1; 6 while(b) 7 { 8 if(b % 2 != 0) 9 {10 t=t*a%c;11 }12 a=a*a%c;13 b/=2;14 }15 return t%c;16 }17 __int64 f2(__int64 a)18 {19 __int64 i;20 if(a <= 1 || a % 2 == 0) return 0;21 for(i=3;i<=sqrt(a);i++)22 {23 if(a % i == 0) return 0;24 }25 return 1;26 }27 int main()28 {29 30 __int64 p,a;31 while(scanf("%I64d %I64d",&p,&a) && p && a)32 {33 if(f2(p) == 1) printf("no\n");34 else35 {36 if(f(a,p) == a) printf("yes\n");37 else 38 printf("no\n");39 }40 41 }42 }